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We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent
variables: the total number of moleculesg and the molar compositionx of the cluster. The resulting kinetic
equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian
motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coeffi-
cients in cluster size and composition space are obtained. For characterization of binary nucleation in gases
three criteria are established. These criteria establish the relative importance of the rate processes in cluster size
and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distri-
bution function of the clusters is determined in terms of the variablesg and x. We obtain an approximate
analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary
nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are
found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the
relaxation or induction time for binary nucleation was calculated using Galerkin’s method. This relaxation time
is affected by processes in both size and composition space, but the contributions from each process can be
separated only approximately.
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I. INTRODUCTION

Multicomponent nucleation of particles in gases plays a
significant and sometimes crucial role in many areas of sci-
ence and technology, including astrophysics, atmospheric
science, and nanoparticle production. Binary nucleation is
the simplest case of multicomponent nucleation, but one that
is very important scientifically. The classical equations of
binary nucleation kinetics, first obtained by Reiss[1], de-
scribe how clusters containingga and gb molecules of spe-
ciesa andb, respectively, change in size due to the absorp-
tion and emission of single molecules of the two condensable
species. These equations permit one to calculate the time
evolution of the different cluster concentrations, represented
by the distribution functionfsga,gbd. In the approximation of
continuous variables, the kinetics equations reduce to a two-
dimensional Fokker-Planck equation[2] of the special form

]t fsga,gb,td = ]ga
ffLaa]ga

sln f + bDFsga,gbddg

+ ]gb
ffLbb]gb

sln f + bDFsga,gbddg

= ]ga
f− Jag + ]gb

f− Jbg. s1d

It follows from the physical interpretation of Eq.(1) that the
kinetics of binary nucleation is equivalent to the Brownian
motion of a particle moving in a potential defined by the
thermodynamic functionDFsga,gbd, the free energy of clus-
ter formation[1]. In Eq. (1) the kinetic coefficientsLaa and
Lbb have the explicit form

Lii =
pi A

Î2pmikT
, s2d

wherepi andmi are, respectively, the partial pressure of va-
por and mass of molecules of kindi, T is the temperature,k
is Boltzmann’s constant,A is the surface area of the cluster,
and b=1/kT. The free energy surfaceDFsga,gbd acts as a
thermodynamic barrier over which the growing clusters must
pass. As shown by Reiss[1], an essential feature of this
surface is a saddle point through which the major nucleation
flux generally, although not always, passes. The location of
this saddle point is defined by the two equations

]DF

]ga
=

]DF

]gb
= 0, s3d

whose solution also determines the critical cluster size
sga

* ,gb
*d. Attainment of the critical size effectively defines

nucleation, since only supercritical clusters can grow spon-
taneously. The size of the critical radiusRc is typically about
10−9 m, and usually one finds thatga

* +gb
* .30, which sup-

ports the continuous variable approximation underlying Eq.
(1). It should be noted that in some cases the solution of Eq.
(3) is not unique.

Here, we will consider the behavior of the kinetic equa-
tion (1) in the vicinity of the saddle point of the free energy
surface. As a preliminary step, we note that nucleation occurs
in the free molecular regime when the two Knudsen numbers
sKni =li /Rd are large, Kni @1, as is true in most experi-
ments. This implies that the mean free pathli of molecular
speciesi is much larger than the typical droplet radiusR, and
that, therefore, there is no correlation between the fluxes of
vapor molecules near a cluster. This circumstance greatly
simplifies the description of the nucleation kinetics in a bi-
nary vapor mixture.
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Let us note that the equilibrium solutionfeq of the kinetic
equation(1), when the fluxesJa andJb are equal to zero, can
easily be found from the right side of Eq.(1):

feqsga,gbd = C expf− bDFsga,gbdg, s4d

whereC is the normalization “constant” which may depend
on the number densities of the condensable vapor molecules.
The determination of the value ofC is still an unsolved prob-
lem in the theory of binary nucleation in gases[3].

The boundary conditions for Eq.(1) were introduced by
Reiss[1]. They are generalizations of the boundary condi-
tions of the classical theory of nucleation kinetics for the
unary vapor[4,5]. According to Ref.[1], the boundary con-
ditions are thatfsga,gbd is the equilibrium distribution func-
tion for small clusters, andfsga,gbd=0 for relatively large
clusters(in comparison with the critical size). For a two-
dimensional partial differential equation, like Eq.(1), these
boundary conditions are not adequate for finding a correct
solution of the equation. They must be supplemented by re-
flecting boundary conditions that prevent the cluster flux
from spreading into regions of negativega andgb values. It
should be noted that the correct boundary conditions for Eq.
(1) were given and used for the numerical solution in earlier
work [6].

In the past, the kinetic equation for binary nucleation has
been obtained in terms of the variablessga,gbd [1,7]. As we
will show, some features of binary nucleation kinetics can be
more conveniently investigated by means of the independent
variablesg, x. Here,g=ga+gb is the total number of mol-
ecules in the cluster, andx=gb/g is the molar composition of
the cluster. Moreover, the usage of these variables opens up
an alternative to the standard method for the development of
the theory of multicomponent nucleation kinetics.

From the point of view of further theoretical investiga-
tion, it is useful also to separate “unstable” and “stable” vari-
ables[8] in the kinetic equation. In nucleation studies, the
variableg is the “unstable” variable andx is the “stable” one;
this classification corresponds with the shape of the cluster
free energy surface(see Fig. 1) at the saddle point. The di-
rection of negative curvature is associated with the unstable
(or unbounded) variable, while the direction of positive cur-
vature is related to the stable(or bounded) variable. It is of
interest to note that for many problems of physics, the be-
havior of the stable variable is the most interesting aspect. In
nucleation studies, we have the opposite situation.

Numerical solution of the binary nucleation kinetics equa-
tions is now a relatively facile problem with modern com-
puters for either steady-state or transient kinetics[7,9], pro-
vided the critical size is not too big. The general problem that
remains is how one can extract some physical insight from
the numerical results. One aim of this paper is to develop
several criteria that will allow for accurate qualitative de-
scription or classification of the main features of binary
nucleation kinetics in gases. Such criteria should be useful
tools for both computational and experimental research.

In Sec. II the explicit form of the kinetic equation of
binary nucleation is presented in the variablesg andx. The
qualitative estimations are made in Sec. III, where the idea is
introduced of two induction times, one for the size dynamics

and one for the composition dynamics, governing the relax-
ation to steady state. The analytical evaluation of the steady-
state nucleation rate and some numerical results are pre-
sented in Sec. IV. The quantitative estimate of the two
induction times is made in Sec. V. The main conclusions are
summarized in Sec. VI. A few preliminary results of this
investigation have been published already[10].

II. KINETIC EQUATION OF BINARY NUCLEATION
IN VARIABLES g AND x

To preserve the physical meaning of the distribution func-
tion in Eq. (1), the distribution functionwsg,x,td relative to
the variablesg andx should be defined as[2]

fsga,gb,tddgadgb = wsg,x,tddg dx. s5d

The saddle point on the surface of the free energy of cluster
formation,DFsg,xd can be found as the simultaneous solu-
tion of the two equations[11]

]DF

]g
=

]DF

]x
= 0. s6d

We denote the solutions of Eq.(6) as g* and x*. As an
illustration, for a vapor mixture ofm- ando-xylene, in Fig. 1
the contour lines of constant free energy of cluster formation
are shown near the saddle point of this surface[12]. This
saddle point has the lowest value of the free energy of cluster
formation along the ridge of maxima that separates sub- and
supercritical nuclei.

If we treat g and x as continuous variables, the kinetic
equation forwsg,x,td can be written as

]twsg,x,td = − f]gJg + ]xJxg, s7d

where the flux components are defined as

FIG. 1. Contour plot of the dimensionless free energy of cluster
formation bDFsg,xd for the binary nucleation of a mixture ofm-
and o-xylene. The saddle point values arebDFsg* , x* d=42.57,
g* =12.54, x* =0.082; for comparison the kinetic composition is
xk=0.486. The supersaturations areSa=5, Sb=3.75; physical prop-
erties are taken from Ref.[12].
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Jg = sLaa + LbbdFg + asg,xdFx, Jx = asg,xdFg + bsg,xdFx,

s8d

and the thermodynamic “force” components are

Fg = − s]g + b]gDF − g−1dw, Fx = − s]x + b]xDFdw.

s9d

We also have the following relations among the “new” and
“old” fluxes:

Jg = gsJa + Jbd, Jx = s1 − xdJb − xJa. s10d

The flux expressions(8) have a pleasing symmetry, reminis-
cent of the Onsager reciprocal relations[13]. The cross-effect
terms that couple the fluxes and forces in sizesgd and com-
position sxd space have the same coefficientasg,xd. In the
previous formulas, we use the notation

asg,xd =
Lbbs1 − xd − xLaa

g
, bsg,xd =

Lbbs1 − xd2 + Laax
2

g2 .

s11d

It follows from the physical interpretation of the kinetic
equation (7) that the sumsLaa+Lbbd is the coefficient of
Brownian diffusion in the cluster size space andbsg,xd is the
coefficient of Brownian diffusion in the cluster composition
space. The latter is always positive and inversely propor-
tional tog2. The mean square amplitude of fluctuations in the
cluster composition is directly proportional to the Brownian
diffusion coefficient in composition space. Therefore, for
larger clusters the average amplitude of such fluctuations will
be smaller.

For binary nucleation, we introduce the additional charac-
teristic compositionxk. The explicit expression forxk is

xk =
Lbb

Laa + Lbb
. s12d

The parameterxk is of a purely kinetic nature because it
depends only on the partial pressures of the vapors and the
molecular masses. For an arbitrary sizeg, if a cluster has a
molar composition equal toxk, the coefficientasg,xkd=0.
Moreover, at this composition the coefficient of Brownian
diffusion in the composition space is a minimum,
bsg,xkd⇒min. For relatively high vapor supersaturations, it
is easy to show that the molar composition of a large cluster
is about equal toxk.

Let us now find the equilibrium solution of the kinetic
equation (7). Substituting the expression wsg,xd
=wsg,xdexpf−bDFsg,xdg into Eq. (8), it is easy to see that
to satisfy the conditionsJg=Jx=0 as well as Eq.(5), we must
put

wsg,xd = Cg. s13d

Therefore, the equilibrium functionweqsg,xd has the form

weqsg,xd = Cgexpf− bDFsg,xdg. s14d

Based on the form of Eq.(14), we can represent the nonequi-
librium distribution function[4,5] as

wsg,xd = Cgexpf− bDFsg,xdgysg,xd, s15d

whereysg,xd is a function changing in the range[0,1]. Equa-
tion (15) defines the functiony [4,5].

After substituting Eq.(15) into Eqs.(8) and(9), we have
the following formulas for the fluxes:

Jg = − weqfsLaa + Lbbd]gysg,xd + asg,xd]xysg,xdg, s16d

Jx = − weqfasg,xd]gysg,xd + bsg,xd]xysg,xdg. s17d

For the functionysg,xd, the boundary conditions are the fol-
lowing:

y = H1 for small values ofg at all x,

0 for large values ofg, g @ g * .
J

The total nucleation rateI, which is an observable quan-
tity, can be expressed as the integral ofJg over all the pos-
sible cluster compositions

I =E
0

1

Jgsg,xddx. s18d

In formulas (15)–(18) the time variablet was omitted for
simplicity.

For a two-dimensional(2D) problem, two supplementary
boundary conditions should be added. We follow the ideas
presented in earlier work[6] and put the boundary conditions
on two lines. These lines create a closed domain in cluster
size and composition space together with Reiss’s boundary
conditions. We have the following new boundary conditions:

JW ·nW = 0, s19d

wherenW is the normal vector to these two lines. The physical
meaning of the new boundary conditions is obviously that
the particle flux across these lines is zero. For the variables
sg,xd in the general case the equations of these two lines are
x=1 and x=0. It is important to note that for these full
boundary conditions, the total steady-state nucleation rateI,
Eq. (18), does not depend ong.

III. QUALITATIVE CONSIDERATIONS

It is very useful to make qualitative estimates[14] of the
key parameters characterizing the kinetics of binary nucle-
ation. Let us determine the size of the domain in the cluster
and composition space near the saddle point, where the
Brownian motion of newly formed clusters occurs. The basic
idea is that thermal fluctuations can change the free energy of
cluster formation only by several units ofkT in this domain.
Therefore, in the cluster size space, the characteristic sizedg
of this domain can be estimated as

Dg , Î1/bu]gg
2 DFsg*, x* du, s20d

and, in the composition space, the characteristic sizeDx of
this domain can be estimated as

Dx , Î1/b]xx
2 DFsg*, x* d. s21d

From the analysis of the expressions for flows(16) and(17),
let us obtain two dimensionless parameters characteristic of
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the binary nucleation kinetics. These parameters involve both
the kinetic and thermodynamic properties of the system. The
first parameter, denoted asZ, arises from the comparison of
terms in Eq.(16). It can be written as

Z =
asg*, x* dDg

sLaa + LbbdDx
=

sxk − x* d
g*

Î ]xx
2 DFsg*, x* d

− ]gg
2 DFsg*, x* d

. s22d

If Z!1, it is possible to neglect the contribution of the sec-
ond term in expression(16).

As an illustration, it should be mentioned that for the
thermodynamic conditions shown in Fig. 1, the parameter
Z=2.85, mainly due to the large value of]xxDFsg*, x* d in
comparison with]ggDFsg*, x* d. We can expect that when
]xxDFsg*, x* d,]ggDFsg*, x* d, the parameterZ will be much
smaller than unity.

The second parameter, denoted byH, arises from the
qualitative analysis of expression(17) and is written as

H =
asg*, x* dDx

bsg*, x* dDg

=
sLaa + Lbbdsxk − x* dg*
sLbbs1 − x* d2 + Laax

2d
Î− ]gg

2 DFsg*, x* d
]xx

2 DFsg*, x* d
. s23d

When Z!1 and H!1, it is possible to neglect the cross-
effect terms in the right-hand sides of Eqs.(16) and (17).
These cross-effect terms are responsible for the coupling be-
tween the kinetic processes in the two spaces. For the ther-
modynamic conditions used for Fig. 1, the parameterH
=0.14.

Let us demonstrate the origin of the third parameter for
binary nucleation more physically. The characteristic timetg
of binary nucleation in the cluster size space can be esti-
mated now as

tg ,
Dg2

Laa + Lbb
. s24d

The characteristic timetg is the exact analogy of the charac-
teristic time for unary nucleation. For binary nucleation, we
have to introduce the additional characteristic timetc, which
defines the temporal scale of the Brownian process in the
composition space

tc ,
Dx2

bsg*, x* d
. s25d

The ratio between characteristic timestc/t is equal to

tc

tg
,

Dx2sLaa + Lbbd
Dg2bsg*, x* d

=
H

Z
. s26d

This ratio of time scales determines the third parameter of
binary nucleation, denoted byW, as

W=
H

Z
=

sLbb + Laadsg* d2

sLbbs1 − x* d2 + Laax* 2d

u]gg
2 DFsg*, x* du

]xx
2 DFsg*, x* d

. s27d

If W!1, we have the following picture of the binary nucle-
ation kinetics. The Brownian diffusion in the composition
space is the fastest process. The Brownian diffusion in the

cluster size space is a relatively slow process. For the ther-
modynamic conditions used for creation of Fig. 1(supersatu-
ration Sa=5, Sb=3.75) the parameterW=0.05. If the param-
eter W@1, we can expect some effects directly related to
ridge crossing[15,16]. Indeed, for the numerical results that
exhibited ridge crossing nucleation kinetics[9], the param-
eter W>161. Formal mathematical analysis of expressions
(16) and(17) leads to the same result concerning the param-
eterW. For the domain defined by the condition of 3kT dif-
ference between the saddle point and the domain boundaries
in Fig. 1, the characteristic nucleation timet,2310−6 s
and, correspondingly,tc is about 20 times smaller. We will
discuss this problem in more detail below.

For qualitative estimation of the binary nucleation kinet-
ics, it is also useful to estimate the ratio of the fluxesJx/Jg.
In the general case, this ratio can be expressed as

Jx/Jg ,
bsg * , x * d * Dgs1 + Hd

sLaa + LbbdDxs1 + Zd
=

Zs1 + HdDx

Hs1 + ZdDg
. s28d

For the free energy surface plotted in Fig. 1, we have that
Jx/Jg!1, so the flux, viewed as a vector, is practically par-
allel to theg axis. We can expect that in the majority of cases
the inequalityJx/Jg!1 is valid, because usuallysDx/Dgd
!1.

Using Eqs.(10) it is also easy to find the formally exact
expression

Jx/Jg = sxf − xd/g, s29d

where xf=tanf / s1+tanfd. The anglef, defined by tanf
=Jb/Ja, is itself a function ofx andg that can be determined
to at least a good approximation using the theory of Li and
Nishioka [17]. At the saddle point, this angle defines the
direction of the principal nucleation flux in accord with
Stauffer’s well-known results[18]. Beyond the critical size,
along the principal growth path,f will equal Stauffer’s
growth anglec. For clusters much larger than the critical
size, Stauffer showed that the limiting compositionxG at-
tained by the growing droplets under conditions of constant
vapor supersaturation would satisfy the equation

tanc =
Lbbf1 − 1/SbsxGdg
Laaf1 − 1/SasxGdg

=
xG

1 − xG
, s30d

whereSasxd andSbsxd are the supersaturations with respect to
a liquid mixture of compositionx. Thus, for largeg, we have
the asymptotic resultxG=xfsxG,gd for all g. In the limit of
high supersaturations, it is easy to see from Eq.(30) that xG
reaches the limiting valuexk, defined earlier. It follows from
expression(29) that the path defined by the equationx
=xfsx,gd is the “attractive” asymptotic line for all growing
binary clusters.

IV. STEADY-STATE NUCLEATION RATE

In this section we consider the special case of steady-state
kinetics of binary nucleation, taking into account the results
of our qualitative analysis. While a full solution of Eqs.(7)
and (8) is actually more difficult in terms of thesx,gd vari-
ables than with thesga,gbd variables, our formulation readily
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motivates a simple and useful approximation that is sug-
gested by the qualitative physical difference between thex
andg variables. We consider the case for whichDx/x* is so
small that the inequalityW!1 is valid. In this case, we use
the following approximation for the distribution function
wsg,xd:

wsg,xd = hsgddsx − x* d. s31d

Expression(31) is a good approximation when the pass on
the free energy surface is very narrow near the saddle point.
Then, after integrating Eq.(7) over all the possible x
values and neglecting a small term proportional to
asg,x* d]xDFsg,x* d, which vanishes at the saddle point, we
obtain a one-dimensional kinetic equation. This equation co-
incides exactly with Zeldovich’s kinetic equation[4]. After
calculations that are standard for nucleation theory, the ex-
pression for the total nucleation rateI can be written as

I = C1sLaa + Lbbdexpf− bDFsg*, x* dgÎa

p
, s32d

where

a = −
b

2
]ggDFsg*, x* d. s33d

Note that if pa→0 or pb→0 (implying x→0 or x→1) ex-
pression(32) reduces to the classical rate expression for
unary nucleation kinetics. For the approximation(31), the
fluxes in the composition and cluster size spaces satisfy the
relationshipJx/Jg=0.

For the domain with the 3kT difference and for the con-
ditions presented in Fig. 1,Dx/x* is equal to 0.6; although
the width of the valley is not as narrow as the approximation
assumes, Eq.(32) still has considerable practical utility. We
compared the values predicted using Eq.(32) with those
given by Stauffer’s rate formula[18], which is known to be
quite accurate, except in the unary limit[9]. The calculations
were made for the ethanol-hexanol system[9] for a wide
range of vapor partial pressures. We found that rates from
Eq. (32), Is32d, were usually greater than or equal to
Stauffer’s rateIS, 0.5ø Is32d / ISø15, for conditions under
which unary nucleation would not predominate. When unary
nucleation does predominate, Eq.(32) has the merit of re-
ducing properly to the correct unary rate. Thus, this rela-
tively simple expression may have some utility for estimat-
ing nucleation rates in binary systems to within an order of
magnitude of the correct numerical value.

A. Numerical simulation of the steady-state kinetics
of binary nucleation

For the thermodynamic conditions used for the creation of
Fig. 1, the numerical solution of the 2D kinetic equation(7)
with full boundary conditions was obtained by the relaxation
method for the rectangular domainV. With reference to the
geometry of Fig. 1, the boundaries of this domain are defined
as follows. The boundaries parallel to theg axis above and
below the saddle point are specified by the two linesx=x1
andx=x2, wherex1 andx2 are constants defined by the equa-
tion

bfDFsg*, xid − DFsg*, x* dg = 3, i = 1,2. s34d

The boundaries parallel to thex axis to the right and left of
the saddle point are specified by the two linesg=g1 and g
=g2, whereg1 andg2 are constants defined by the equation

bfDFsg*, x* d − DFsgi,x* dg = 3, i = 1,2. s35d

The boundary conditions on this rectangle were defined in
the manner proposed previously[6]: For g=g1, ysg1,xd=1,
and forg=g2, ysg2,xd=0. Along the linesx=x1 andx=x2 the
following conditions hold:

]xfysg,xidg = 0, i = 1,2. s36d

The boundary conditions(36) mean that clusters cannot
leave this region during nucleation. From the mathematical
point of view, these boundary conditions permit the function
y to change continuously from 0 to 1 along these domain
boundaries. The relaxation method was used for solving this
boundary problem. We emphasize that the grid scheme of the
equation was created in such manner in order to maintain the
conservative nature of Eq.(7). The result of this calculation,
a 3D plot of the slowly changing functionysg,xd, is pre-
sented in Fig. 2. Forx=x* and g=g*, the valuey=0.5 is
found [19,20]. A contour plot ofysg,xd is shown in Fig. 3.

It can be concluded from Fig. 2 that establishment of the
steady-state regime is faster for small values of the variable
x. We see that the functiony decays to zero at smaller values
of g whenx is smaller than whenx is larger. Since more time
is needed to produce larger cluster sizes, the transition to the
steady state will be shorter for smaller values ofg. The cal-
culation of a characteristic time of steady-state binary nucle-
ation is presented in the next section.

V. CALCULATION OF RELAXATION TIME
OF BINARY NUCLEATION

Qualitative estimates of the characteristic times needed to
establish steady-state binary nucleation have been made in

FIG. 2. A three-dimensional view of the dimensionless function
y for the conditions of Fig. 1.
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Sec. III. Here we make quantitative calculations of the relax-
ation times of the binary nucleation kinetics by the Galerkin
method[21]. The full boundary conditions are used below.

For our purpose, the slowly changing functionysg,xd may
be represented as

ysg,xd = ystsg,xd + Astdsinfgsgdgsin2fmsxdg s37d

where ystsg,xd is the steady-state solution of Eq.(6) with
boundary conditions(36) and

gsgd = psg − g*+ 0.5Dgd/Dg, s38d

msxd = psx − x*+ 0.5Dxd/Dx. s39d

The second term in expression(37) exactly satisfies the zero
boundary conditions for small and largeg, and the condition

JW ·nW =0 for the other two boundaries of the domain, which we
consider as straight lines.

Following the application of Galerkin’s method[21], we
define the inner product of functionsfsg,xd and hsg,xd as
follows:

kfhl =E E Vweqfh dg dx. s40d

The domainV was described in the previous section. After
substituting expression(37) into Eqs. (7)–(9), we multiply
both sides of Eq. (7) by the control function
sinfgsgdgsinfmsxdg, and integrate each side of the equation
over the domainV. As a result of this standard procedure for
Galerkin’s method, we find the following equation for the
evolution of the amplitudeAstd:

k0]tA = − p2Afk1 + k2 + k3g. s41d

The solution of Eq.(41) has the form

Astd = A0 expf− t/tg, s42d

whereA0 is the initial value of this amplitude, which can be
arbitrary. The relaxation timet is equal to

t =
k0

p2fk1 + k2 + k3g
, s43d

where the following definitions apply:

k0 = ksin2fgsgdgsin3fmsxdgl, s44d

k1 =
sLaa + Lbbd

Dg2 kcos2fgsgdgsin3fmsxdgl, s45d

k2 =
2

Dx2kbsg,xdsin2fgsgdgsinfmsxdgcos2fmsxdgl, s46d

k3 =
1

2DxDg
kasg,xdsinf2gsgdgsinfmsxdgsinf2msxdgl.

s47d

All integrals are nonlinear functions ofDx andDg. We em-
phasize that the cross effect between spaces, related to the
coefficientasg,xd in the kinetic equation(7), gives the con-
tribution to the relaxation time described byk3.

Let us introducetg, which describes the main contribution
for relaxation in the cluster size space

tg =
k0

p2k1
, s48d

and in the limit of unary nucleation we must have the equal-
ity t=tg. Correspondingly, the relaxation timetc for compo-
sition space is[cf. expression(25)]

tc =
k0

p2k2
, s49d

and in the limit of unary nucleation, we must have the result
tc→`. This follows because the relaxation time is inversely
proportional to the collision frequency of the dilute compo-
nent. As this species concentration is reduced to zero, the
collision frequency vanishes, andtc diverges. If we neglect
the small contribution from thek3 term, which vanishes any-
way in the unary limit, we can use the definitions(48) and
(49) to rewrite Eq.(43) as

1

t
=

1

tg
+

1

tc
, s50d

which has the familiar structure for parallel relaxation pro-
cesses. Interestingly, the ratiok1/k2=tc/tg can be repre-
sented by means of the parameterW, defined in Sec. III. This
allows the alternative expressiont=tgW/ s1+Wd. We can
consider the expression(43) for 1/t as an approximation of
the lowest eigenvalue of Eq.(7) with full boundary condi-
tions.

It is useful to obtain approximate, analytical results for the
integrals(44)–(47). Obviously, the value of the free energy
of cluster formation at the saddle point does not explicitly
affect the value oft as given by our expressions, although
there is an implicit relationship since from classical theory
DF* is proportional tog* and a nonlinear function ofx*.
Hence, small values ofDF* imply small values ofg*, etc. If

FIG. 3. The same dimensionless functiony as in Fig. 2, but
shown as a contour plot.
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the integrals are estimated very roughly using the mean value
theorem(e.g., with mean values of sin2 and cos2 equal to
0.5), we have

t <
1

p2SLaa + Lbb

Dg2 +
2fLaax* 2 + Lbbs1 − x* d2g

Dx2g* 2 D . s51d

We see that the approximate forms(50) and(51) separate the
relaxation processes in the cluster size and composition
spaces. In previous analytical work[22–24] on this problem,
such a separation was not considered, although, in retrospect,
there is clear evidence for the two processes in numerical
simulations of transient binary nucleation kinetics[25]. For
practical purposes, it is possible to use the following formu-
las for Dg and Dx (obtained for 3kT difference from the
saddle point in the parabolic expansion of the free energy of
cluster formation):

Dg = Î6/bu]gg
2 DFsg*, x* du s52d

and

Dx = Î6/b]xx
2 DFsg*, x* d. s53d

VI. CONCLUSIONS

For the theoretical investigation of some features of bi-
nary nucleation kinetics in gases, the transformation to a dif-
ferent set of natural variables, the total number of molecules
g and the compositionx, was made. This transformation,
which has a clear physical meaning, helps to separate the
processes in the cluster size and composition space. In par-
ticular, we obtained expressions for the coefficients of
Brownian diffusion in both the composition and cluster size
space, respectively, asfLbbs1−xd2+Laax

2g /g2 andsLaa+Lbbd.
The coefficient of Brownian diffusion in composition space
has its minimum value whenx=xk. This compositionxk is

defined by purely kinetic factors,xk=Lbb/ sLaa+Lbbd.
Three independent dimensionless parameters useful for

the characterization of binary nucleation kinetics in gases
have been obtained in the frame of our approach:Z andH,
expressions(22) and (23), and their ratioW=H /Z. These
parameters include both thermodynamic and kinetic factors
and permit one to identify the main physical characteristics
of any gas phase binary nucleation process.

For the case whenW!1 (i.e., Brownian diffusion in the
composition space is much faster than Brownian diffusion in
the cluster size space), analytical expressions for the total
nucleation rate were obtained with roughly the same accu-
racy as the classical ones[1,15,18]. Note that if the partial
pressure of either component goes to zero(implying x→0 or
x→1), our simple expression, Eq.(32), reduces to the clas-
sical rate expression for unary nucleation kinetics. In other
words, in our approach the common failure of binary nucle-
ation kinetics to convert smoothly to unary nucleation does
not arise. For steady-state binary nucleation kinetics, a nu-
merical solution was found using the full set of boundary
conditions. Numerical results of the full 2D calculation of
binary nucleation kinetics were presented in Figs. 2 and 3.

The characteristic relaxation times for binary nucleation
kinetics in cluster size spacetg and in composition spacetc
have been estimated in expressions(24) and(25). For the full
boundary conditions in the cluster size and composition
space, the calculation of the relaxation time of binary nucle-
ation was made using Galerkin’s method. The contributions
of the relaxation processes in cluster size and composition
space can be separated approximately in expressions(50)
and (51).
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